第一节
研究队伍,他就是爱因斯坦。这时,景况好转的爱因斯坦将兴趣转移到量子假说,并成功地挽救了这个伟大的发现。
从相对论角度来讲,爱因斯坦再次关心量子理论,很可能是认为广义相对论可以深入理解原子的微观结构。6年前,他曾经放弃过量子问题,而对丹麦科学家玻尔的原子结构理论发生了兴趣。玻尔认为电子只在一些特定的圆轨道上绕核运行,在这些特定的轨道上运行时并不发射能量,只在它从较高能量的轨道上向一个较低能量轨道跃迁时才发出辐射能,反过来再吸收辐射能。玻尔解决了原子的稳定性问题,成功解释了氢原子的光谱规律。爱因斯坦认为这是一次重大发现,既然辐射的吸收和发射是缘于电子从一个静止轨道跃迁到另一个静止轨道,上帝在二者之间究竟给它施加了什么压力,这个问题探究起来将是充满刺激和妙不可言的。爱因斯坦智慧的双翼在玻尔的领地盘旋飞翔了一段时日后,觉得许多问题不能立即解决,于是他又把思索的目光聚焦在普朗克的量子假说上。
当时爱因斯坦已经开始考虑认同量子理论引力理论。同时,爱因斯坦提出了普朗克公式与新原子理论之间的新联系。他向贝索介绍他的新论文时说:“关于辐射的吸收和发射,我想出了一个非常好的主意。从普朗克公式得到了非常简单的推论,所有的事情都是代数形式的。”
爱因斯坦称赞普朗克1900年的推导是大胆的推导,但爱因斯坦所采用的方法具有普遍性。爱因斯坦从已经得到广泛验证的玻尔的基本假设开始推演:电子在原子中具有许多不同的离散能量状态,通过辐射的吸收和发射,可以从一种状态变到另一种状态。结合辐射和原子间的热平衡假设,就可以得到普朗克公式。这个只有两页纸的概要性论述还包括辐射的受刺激辐射,所以这些公式已经暗含了50年后才出现的激光理论。对爱因斯坦来说,最重要的是这个假设的简单性和产生这个假设的方法的普遍性。他认为这很可能成为未来理论发展的基线。
在另一篇文章中,爱因斯坦指出光线不是以球形波的形式发射的,而是具有一定方向的针状发射,由于这种发射辐射,导致分子向相反的方向移动一个确定的距离。这种观点很像爱因斯坦1905年的“启发性观点”——光线是一串粒子。
在这篇文章中,爱因斯坦基本上推导出了光子的所有性质:辐射量子或光子粒子。虽然爱因斯坦尽量使这个术语符合当时的习惯,但他清楚地意识到,只有他一个人坚持辐射的量子假设。6年后,美国物理学家A·康普顿通过实验验证了爱因斯坦提出的公式,不久整个科技界都在谈论“量子”。
以爱因斯坦的巨大影响,世界的目光正在向量子学说聚焦。这说明,一个伟大的量子时代即将来临。
但是,就是这么一个重要的常数,却在相当长的时间内没有其精确的值,尽管第一个数值是普朗克本人提出的,但那也只是他依据他的黑体辐射实验数据估算出来的。第二个想要挑战这一测量实验的是密立根,1923年度诺贝尔物理奖的获得者,他用的方法是利用光电效应。从1914年起他就对爱因斯坦光电效应定律作过精密的实验校核,1916年,密立根在芝加哥大学那个著名的实验室里进行了著名的“油滴实验”,在精确测得电子电荷e的值后,即可以从er和f.g.black,他们分别于1916年和1917年公布了自己的实验结果和理论依据,显然他们利用的杜安-亨脱(duane-)定律比密立根利用的光电效应所得到的数值要精确。此时又有一些学者纷纷效仿,但却没有一个能够精确符合。叶企孙就是在这种情况下提出了自己的设想,他仔细研究了前人的论文,看出了其中的缺陷。于是,一个大胆的计划从他的心中萌生。
《荀子》上说:“假舆马者,非利足也,