第一章 邪恶的数和友好的数
0个完全数——比古人多出7倍以上——但他们还必须找出尾数为6和8的模式。
古人还观察到,第一个完全数有一位数字,第二位完全数有2位数字,第三个有3位数,第四个有4位数。所以他们推测,第五个完全数会有5位数。在欧几里得故去17个世纪后发现了第五个完全数,它赫然具有8位数:33,550,336。并且位数继续迅速增多,以下3个完全数分别为8,589,869,056;137,438,691,328;和2,305,843,008,139,952,128。
欧几里得证明了一旦2n-1是素数,那么2n-1(2n-1)就会得出一个完全数,但他并没有说n的哪一个整数值会使2n-1成为素数。由于使2n-1为素数的前4个n值为前4个素数(2,3,5,7),可能有人推测:如n为素数,2n-1也会是素数。那么,让我们来试试看第五个素数:11。如n=11,2n-1则为2,047,而2,047并非素数(它是23和89的积)。真实情况是:要使2n-1为素数,n必须是素数,而n为素数并不就意味着2n-1是素数。事实上,对于n的大多数素数值来说,2n-1并不是素数。
由2n-1一式得出的数列现在称作默塞纳数列,马林·默塞纳是17世纪的巴黎僧侣,他在尽僧职之余抽空进行数论的研究。根据欧几里得的公式,每发现一个新的默塞纳素数,就会自动出现一个完全数。 1644年,默塞纳自己说,213-1,217-1和219-1这3个默塞纳数是素数(8,191;131,071和524,287)。这位僧侣还声称267-1这个巨大的默塞纳数会是位素数。在250多年的时间里,没有人对这一大胆的声言提出疑问。
1903年,在美国数学协会的一次会议上,哥伦比亚大学教授弗兰克·纳尔逊·科尔提交了一篇慎重的论文,题为:论大数的分解因子。数学史家埃里克·坦普·贝尔记下这一时刻所发生的事:“一向沉默寡言的科尔走上台去,不言不语地开始在黑板上计算267。然后小心地减去1,得出21位的庞大数字:
147,573,952,589,676,412,927。
他仍一语不发地移到黑板上的空白处,一步步做起了乘法运算:
193,707,721×761,838,257,287
两次计算结果相同。默塞纳的猜想——假如确曾如此的话——就此消失在数学神话的废物堆里了。据记载,这是第一次也是惟一的一次,美国数学协会的一位听众在宣读论文之前向其作者热烈欢呼。科尔一声不吱在他座位上坐下。没人向他提任何问题。”
在欧几里得证明他的公式总是得出偶数完全数的大约2,000年之后,18世纪的瑞士数学家伦纳德·尤勒证明,该公式将得出全部的偶数完全数。这样,我们就可以用另一种方式提出奇数完全数问题:是否存在不是由欧几里得公式得出的完全数呢?
为弄清最近取得的进展,年轻的米歇尔·弗里德曼埋头翻阅过期杂志:《计算数学》、《数论杂志》、《数学学报》及一堆决不会在咖啡桌上看到的其他期刊。他甚至参阅理查德·盖伊的艰深的经典著作《数论中的未决问题》,该书不仅讨论完全数,而且还探讨十几个其他神秘专题:“近超完全数”、“友谊图表”、“优雅图”、“贪婪规则系统”、“纽环游戏”、“达文波特-施尼茨尔系列”、“半友善数”、“友善数”和“不可接触数”。
米歇尔知道,困于这一棘手问题的数论学家们验明:如果真有奇数完全数存在的话,所必须具备的各类特征有:它必须被至少8个不同的素数整除,其中最大的一定要大于300,000,次大的也要大于1