第一章 邪恶的数和友好的数
,000。如果奇数完全数不能被3除,它至少应被11个不同的素数整除。此外,当一个奇数完全数除以12时,它应有余数1;当它除以36时,它的余数应该是9。
我们从这些验证中能得出什么结论呢?对奇数完全数的限制越多,奇数完全数存在的可能性就越小。1973年,彼得·哈吉斯运用这样的限制条件并借助于计算机肯定地证明了1050以下没有奇数完全数。米歇尔从盖伊的书中看到,自1973年以来,其他数论家“渐渐地把奇数完全数不可能存在的上限推到10100,尽管有人对后面这一证明表示怀疑”。
既然与盖伊一样有权威的人对这些证明提出质疑,米歇尔决定重新研究更低限问题。他运用 IBM PC机及一组限制因素,包括一些文献中极少提到的来自印度的限制因素,证明在1079之下不存在奇数完全数,1079有8个素数因数——这是一个奇数完全数所能有的最少的素数因数的数目。
米歇尔说:“我在论文中只是引用了盖伊的话:以前(关于奇数完全数低限很高)的证明是可疑的。当我参加威斯汀豪斯决赛时,我决定检查其他一些证明,但没有发现它们可疑的原因。因此,我给盖伊打了电话,他告诉我,数学家不喜欢由计算机做出的证明,因为你没法知道:编程序的人出继漏了吗?计算机出故障了吗?”
即使该计算机的计算错误(比如说在别的计算机上)被检查出来,但由于那些证明本身常常很长并且很复杂,因而除了原作者没人对它们一步步地仔细加以审查。只有哈吉斯的证明(整整长达83页!)曾由其他数学家全面地审查过,并宣布为有充分根据。
米歇尔哧哧地笑了,他不无骄傲地说:“我的证明也是可疑的。威斯汀豪斯的人们不是没有理解就是满不在乎。就我所知,没人真正审阅过我的论文。”
根据他的论文及其他辅助材料,米歇尔成了从多达1,100名参赛者中选出的40名威斯汀豪斯决赛选手之一。他们40人被召到华盛顿,在那儿决出10位优胜者。米歇尔解释说:“一旦你来到华盛顿,那几乎就不是根据你的论文来看了。一组科学家对你进行面试,他们会问:‘你如何测出太阳与地球间的距离?你如何测出华盛顿纪念碑的高度?’有一女孩说:‘用卷尺测量。’有位科学家领带上面附有半张元素周期表,他就元素周期表问题向每个人提问。有些人注意到了领带并径直读出答案。我不这样,因此我不得不记住氧的质子数及电子层数。”
米歇尔补充说:“向我们提问的还有一位精神病医生。”我吃了一惊。“当我谈到精神病医生时,人们都感到吃惊。他向人们询问他们的家庭生活。威斯汀豪斯想发现未来的诺贝尔奖获得者。那才是他们的大事。他们希望在前10名中有未来的诺贝尔奖获得者。”米歇尔解释说,过去有5名威斯汀豪斯决赛选手(一年有40个,并且这种竞赛一直进行了44年)获得诺贝尔奖,但这5人之中,只有1人是前10名的。米歇尔耐心地向我解释,威斯汀豪斯这种做法还不如随意选择呢。(每年从40名中随意选择10名会在前10名中产生出1.25名诺贝尔奖金获得者。至于怎么会有0.25个科学家到斯德哥尔摩去领奖就只能留给数学家去想象了。)那些精神病专家显然是被请来从参赛者中发现获诺贝尔奖人物的苗子,以便提高他们的比例的。
米歇尔接着说:“我的指导人在我的申请中写道,我不会放过一个问题,我是非常固执的。因此,精神病专家就固执一事整整问了我15分钟,‘你怎么个固执法?你考虑过固执会给你今后的生活造成损害吗?你是否会就是因为你曾经反对过某些建议而根本拒绝接受呢?’”
既然米歇尔成功地进入了前10名,那也许可以说固执是荣获诺贝尔奖桂冠者的