返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
第十二章 数学中的民主
可,对策论就能有助于评估悖论通常是如何产生的。例如,现在我们看看法国数学家孔多塞的观察,由每个人投票决定的群体优先选择在悖论上可能是“非传递性”;如想吃快餐的群体,宁愿去麦克唐纳而不愿去伯格王,宁愿去伯格王而不愿去温迪,然而又喜爱温迪胜过麦克唐纳。如果这个群体由3个人组成(罗纳德、克拉拉和赫布),而仅当每个餐馆首先由一个人排序,其次由另一个人排序,第三再换一个人排序时,这种“非可递性”就将出现。假定所有可能的个人优先选择看来都是相等的,则整个群体的非可递性的机会为5.6%。这个数字看来似乎不大,但要记住这个百分率只不过是针对了个人和3个选择对象的最简单情况。

    布拉姆斯在《政治学中的悖论》一书中总结了更复杂情况中群体非传递性概率的最新研究,其结果是在选择对象和投票人数目增加的两种情况下,非传递性的概率才增加,但它对选择对象的数目更为敏感。如果选择对象固定数为3时,则悖论的可能性会略有增加,从5.6%(投票人为3时)增加到8.8%(投票人数接近于无穷大)。如果投票人固定数为3的时候,则悖论的可能性会陡然上升,从5.6%(选择对象为3时)增加到100%(由于选择对象数接近无穷大)。的确,布拉姆斯特别提到对于投票人的任何固定数,由于选择对象数无穷地增加,悖论的概率必然会逐渐上升。

    摘自史蒂文·布拉姆斯著《政治学中的悖论》(纽约,1976年自由出版社)第42页。

    对策论中的数学可以与许多其他抽象数学学科中所涉及的数学进行简单的比较。但它决不是无价值的。的确,数学常常会导出反直觉的或者违背所预期的结果。数学的简明性不会使对策论的严密性比高维拓扑学的严密性更差,刊登这种问题的杂志也只有一小部分博士能够读懂。简明性甚至可能是优点:对策论中的数学是这样容易理解,从而几乎没有可能由于文献中的数学论述模糊难懂而引不起人们的兴趣。

    美国数学学会的全体官员都认为布拉姆斯的论述有误。这样一个著名的数学家团体能出现差错的事实表明对策论的结果是如何令人吃惊。这种错误论述出现在美国数学学会的投票说明上,学会会员将使用该说明选出参加特别委员会的代表。对于这次投票,美国数学学会恢复了表决程序,采用单一的可转让投票制度(又称选择投票法)。它是19世纪50年代后期由不引人注意的英国律师托马斯·黑尔提出的,他曾撰写过两本书,批判传统的投票制度。

    黑尔曾特别为下述事实所苦恼:在传统的比例代表制中,每个选区选举一位以上的候选人,实际上,为数甚多的少数选民可能会被剥夺掉选举权,尽管他们的原号码表明他们有资格选出代表。现考虑一个假设的选区,要从4位候选人中选出两位代表。把其中的两位候选人称作匈奴人阿蒂拉和吉·乔,他们都是典型的保守派人士,两人中阿蒂拉是极右人士。另外两位候选人是哈尔·汉道特和弗里达·弗里拉夫,他们都是自由派。两人中弗里拉夫更富有同情心。该选区内有23位选民,其中13位是保守派,10位是自由派。23位选民的选举意愿,按照对候选人的选择从第一选择到最后选择的顺序排列如下:

    选民数 第一选择 第二选择 第三选择 第四选择

    7 阿蒂拉 吉·乔 汉道特 弗里拉夫

    6 吉·乔 阿蒂拉 汉道特 弗里拉夫

    6 汉道特 弗里拉夫 吉·乔 阿蒂拉

    4 弗里拉夫 汉道特 吉·乔 阿蒂拉

    在选举中,每位选民允许选出两位候选人,阿蒂拉和吉·乔都将当选。因为这两位候选人每位都各得13票。结果是10位自由派选民将没有代表,即使他们构成全体选民的43%。而13位
上一页 书架管理 下一页

首页 >阿基米德的报复简介 >阿基米德的报复目录 > 第十二章 数学中的民主