第四部 堂堂大教授-5
平方。正当我伸手要摇玛灿特计算机时,他说:“那是2300。”我开始操作计算机,他说:“如果你必须要很精确,答案是2304。”
计算机也是2304,“哗!真厉害!”我说。
“你不知道怎样计算接近50的数字的平方吗?”他说:
“你先算50的平方,即2500,再减去你要计算的数及50之间的数差(在这例子中是2)乘以一百,于是得到2300。如果你要更精确,取数差的平方再加上去,那就是2304了。”
几分钟之后,我们要取2.5的立方根。那时候,用计算机算任何数字的立方根之前,我们先要从一个表里找出第一个近似值。我打开抽屉去拿表——这次时间较多——他说:“大约1.35。”
我在计算机上试算,错不了!“你是怎样把它算出来的?”我问:“你是否有什么取立方根的秘诀?”
“噢,”他说:“2.5的对数是……。对数的三分之一是1.3的对数,即……,以及1.4的对数,即多少多少之间,我就用内插法把它求出来。”
于是我发现:第一,他能背对数表;第二,如果我像他那样用内插法的话,所花的时间绝对要比伸手拿表和按计算机的时间长得多。我佩服得五体投地。
从此以后,我也试着这样做。我背熟了几个数字的对数值,也开始注意很多事情。比方有人说,“28的平方是多少?”那么注意2的平方根是1.4,而28是1.4的20倍,因此28的平方一定接近400的两倍,即800上下。
如果有人要知道1.73除1是多少,你可以立刻告诉他答案是0.577,因为1.73差不多等于3的平方根,故此1/1.73就差不多等于3的平方根再除以3,而如果要计算1/1.75呢,它刚好是4/7,你知道1/7那有名的循环小数,于是得到0.571428……跟贝特一起应用各种诀窍做快速心算,真是好玩极了。
通常我想到的,他都想到,我很少能算得比他快。而如果我算出一题的话,他就开怀大笑起来。无论什么题目,他总是能算出来,误差差不多都在1%以内。对他而言,这简直是轻而易举——任何数字总是接近一些他早已熟悉的数字。
有一天我心情特别好,那时刚巧是午饭时间,我也不晓得是怎么搞的,心血来潮地宣布:“任何人如果能在10秒钟内把他的题目说完,我就能在60秒之内说出答案,误差不超过10%!”
大家便开始把他们认为很困难的问题丢给我,例如计算1/(1+x4)的积分等。但是事实上,在他们给我的x 范围内,答案的变化并不太大。他们提出最困难的一题,是找出(1+x)20中x10的二项式系数,我刚好在时间快到时答出。
他们全都在问我问题,我得意极了,这时奥伦刚巧从餐厅外的走廊经过。其实,来罗沙拉摩斯之前,我们早在普林斯顿共事过,他总是比我聪明。例如,有一天,我心不在焉地在玩一把测量用的钢卷尺——当你按上面的一个钮时,它会自动卷回来的那种;但卷尺的尾巴也往往会往上反弹,打到我的手。“哇!”我叫起来,“我真呆,这东西每次都打着我,我却还在玩这东西。”
他说:“你的握法不对,”把卷尺拿过去,尺拉出来,按钮,卷回来,他不痛。
“哇!你怎么弄的?”我大叫。
“自己想想吧!”
接下来的两星期,我无论走到哪里,都在按这卷尺,手背都被打得皮破血流了。终于我受不了。“奥伦!我投降了!你究竟用什么鬼方法来握,都不会痛?”
“谁说不痛?我也痛啊!”
我觉得自己真的有够笨,竟让他骗我拿着尺打自己打了两个札拜!