第9章 遗传文本的卫士:DNA修复及其故障
正如我们在上一章所述,结肠中两种生长控制基因——癌基因和肿瘤抑制基因——的缺陷导致肿瘤的发端及其后继发育。许多肿瘤的产生都是这两类基因在共同发挥着关键的作用;迄今为止,已知膀胱瘤、肺癌、脑瘤和乳腺癌都是如此。在下一个10年内,这一规律将扩展适用于差不多全身所有组织的肿瘤。无疑,不同类型的肿瘤细胞其产生突变的基因也是不同的。我们已经知道,导致形成乳腺癌和结肠癌的癌基因和肿瘤抑制基因存在很大不同。但各类癌症有着共同规律:人类癌细胞的恶性生长,缘起于癌基因的激活和肿瘤抑制基因的失活。
可是近来,人们发现其他基因亦在癌症形成过程中扮演重要角色。这些基因在其正常阶段,并非主管细胞繁殖。它们各自在细胞内的任务很不一样:它们或直接或间接地保证细胞DNA的统一性。如果它们未能克尽职守,将导致细胞基因组中累积大量的突变基因,尤其包括前面所讲的生长控制基因。由于生长控制基因的突变率不断提高,癌症形成的总体进程亦在加快,导致个体有生之年肿瘤数目大量增加。
人类细胞DNA序列中存储的遗传文本总是易受破坏的。通过饮食或者吸烟,有许多化学致癌物进入人体,最终进入我们的细胞,然后大肆攻击细胞DNA分子。绝大多数饮食中的诱变因子属于食物中的天然成分,而非人为的污染。埃姆斯(Ames)记载了从煮过的咖啡到芹菜茎以及豆芽等几十种天然食品,它们都富含强力的天然诱变物质。
此外,如埃姆斯和其他人员所述,细胞每日正常能量代谢释放出几百万活性分子副产品。其中许多是氧化剂和“自由基”,自由基中包含着高活性的不成对电子。与外部诱变因素一样,这些内部的分子也能以化学方法改变细胞及DNA中的分子结构。DNA的信息内容再次受到篡改的威胁。
大多数活性分子都被细胞用来防御其进攻的勤快的保护分子群拦截和中和了。保护分子中有维生素C这样的天然抗氧化剂。在有害分子胡作非为、制造遗传混乱之前,细胞还产生大量的酶起到中和及解毒作用。
有些人体内的解毒酶维持在很高水平,而另外一些人体内产生的解毒酶要少得多。这种遗传差别,使我们得以搞清这些酶在保护细胞不受各种致癌物攻击方面的作用。例如,保护酶水平较低的个体是否要比那些水平较高的个人易患癌症呢?
事实上,的确发现了某些惊人的差别。同是烟民,那些NAt酶(N一乙酸转移酶)处于低水平的人,膀胱癌的发病率是NAt酶水平较高的人的两倍半。另一种解毒酶GStMI(谷脱甘肽一S一转移酶MI)处于低水平,导致肺癌发病率增长了三倍。这些发现,使我们有朝一日可以根据吸烟者一生中香烟的消费量以及他们体内的解毒酶水平来估算他们的患病风险。
有些诱变物质成功地穿越了这些复合保护机制。逃过失活一劫后,这些诱变物质同细胞染色体中的DNA分子相互作用,使DNA分子受到破坏。每个人体细胞一天中要遭受好几千次这样的诱变物质进攻。然而尽管受到密集火力攻击,一天下来细胞DNA仍然相对完好。这里存在的矛盾需要作出解释。
对细胞复制自身DNA分子的机制仔细审查,也发现了类似的矛盾。细胞复制DNA是为了分裂作准备,这一过程容易发生错误。在DNA聚合酶——为DNA复制服务的酶——复制出一段DNA后,由于聚合酶的操作失误,此刻DNA新链中每1000个碱基就有1个是错误的。然而同以前一样,DNA中累积的突变体的实际比率仍是极低的。经由某种途径,细胞消除了绝大多数DNA中最初的复制错误。
实际数字非常低:到细胞完成全部DNA复制过程时,只有不到百万分之一的碱基复制错误。细胞内部有一套复