第八章 《数学原理》:数学方面
个代表来,在大选里就是这样;但是,如果这些类的数目是无限的,我们就无法有无限数目的任意的挑选,并且我们不能确知可以做出一个选择来,除非有一个内包来得到所希望的结果。我举一个例子:从前有一个百万富翁,他买了无数双鞋,并且,只要他买一双鞋,他也买一双袜子。我们可以作一个选择,从每双鞋里挑一只,因为我们总是可以挑右鞋或者挑左鞋。所以,就鞋来说,选择是存在的。但是,论到袜子,因为没有左右之分,我们就不能用这个选择的规则。如果我们想从袜子之中能够加以选择,我们就不能不采取一种精密得多的方法。例如,我们可以找出一个特点来,在每双袜子中有一只比另一只更近于这个特点。
这样,我们从每一双里挑选那一只比较近于这个特点的袜子,我们就选择出来了一套。我曾有一次把这一个谜说给在三一学院教职员餐桌偶尔坐在我一边的一位德国数学家听,可是他唯一的评语是:“为什么说百万富翁?”
有些人以为,不言而喻,如果这些类之中没有一个是零,从每类中选择出一个来就一定是可能的。另有一些人则认为不然。关于这一点,皮亚诺说得最好:“这一个原则正确不正确呢?我们的意见是没有价值的。”我们对于我们所谓“乘法公理”所下的界说是:这是假定永远可能从一组若干类中的每一个(这些类没有一个是零)选出一个代表来。我们找不到赞成或反对这个公理的论证,因此我们把这一个公理明白地包括在应用这个公理的任何定理的假定中。在我们遇到这一个问题的同时,载尔美乐提出了他所说的“选择原理”,这是一个略为不同但在逻辑上相等的假定。他和一些别的人把它看做是一个自明的真理。因为我们并不采取这一个意见,我们尽力寻求一些方法来对付乘法而不假定这个公理是真的。
选择的逻辑学说无论在哪一点上都不依赖“数目”这个概念,在《数学原理》里我们是在给“数目”下界说之前提出来选择学说的。这种意思也可以用于另一个极其重要的概念,也就是,在普通语言里用“等等”这些字所表示C的那个概念。
假定你想用“父母”这个概念来说明“祖先”这个概念。
你可以说,A是Z的祖先,如果A是B的父(或母)亲,B是C的父(或母)亲,等等,并且这样在有限的多少步之后,你达到Y这个人,他是Z的父(或母)亲。这都没有问题,只是有一件,这里边包含“有限的”这几个字,这几个字不能不加以界说。
只有用一个完全一般的概念的特殊应用,给“有限的”下定义才是可能的,就是,从任何既定的关系而来的祖先关系那个概念。这个祖先关系概念最初是弗雷格远在一八七九年发展出来的,但是直到怀特海和我发展出这个概念来的时候,弗雷格的工作一直没有为世人所注意。我们想加以界说的这个概念可以初步解释如下:如果x对于y具有R关系,我们姑且把x到y这一步称为“R步”。你可以从y到z再走一R步。凡是通过从x开始的那些R步你所能达到的东西,我们都说成为关于R的x的“后代”。我们不能说凡是通过一个“有限数目的R步”你所能达到的东西,因为我们还没有对于“有限”
这个辞加以界说。我们只有借“后代”这个概念才能给它下一个界说。关于R的x的后代可以界说如下:我们先给关于R的一个“世传的”类下一个界说。
这是有这样性质的一个类:凡是从这个类的一项通过一R步所达到的东西就又是这个类的一项。举例来说,“斯密”这个名称的性质是在父子关系中世传的,人性这种性质是在父母对子女的关系中世传的。“如果y属于x所属于的每个关于R的世传的类,y就属于关于R的x的后代”,我现在说明这是什么意思。现在让我们把这个应用于普通的整数,用一个数目对于它下面紧接