第四节
限,如果一只鸟每天都需要频繁地飞上天去,那它在起飞时就必须不能这么辛苦,因此,体重十公斤就是一个上限。只有这种体重的小型鸟,它的振翅速率才会很快。
综观为数众多的鸟类观察的结果可以看到,对于利用滑行的初速度起飞、可持续进行巡航飞行的鸟类来说,它的体重上限是四十公斤。
在海面上空飞翔的鸟类很擅长借助风势进行滑翔,可它们在起飞时每秒钟的振翅次数都很多,等到了巡航时,再把这个数字降下来。
起飞时的振翅次数相当于胸大肌所产生的最大输出,而高空滑翔时所需的最低限度的振翅次数则是最小输出。实际上,所有会飞的鸟都需要在这两个值之间保持一个很大的跨度。可是,随着体重的增加,两个峰值之间的差距就会越来越小,在体重达到四十公斤时,最大值和最小值之间的差值就变成了零。体重大的鸟没办法在空中利用气流进行滑翔,即便能够升到高空,它也必须拿出和起飞时同样的劲头不停地拍打翅膀。
这一观察结果所告诉我们的是,只要是生息在地球上的鸟类,体重超过四十公斤就将无法进行长时间的巡航飞行。随着体重增加到四十五、五十甚至五十五公斤,振翅所产生的升力将不足以托起自身的重量,起飞也就无从谈起。生物都逃不出这样的宿命,如果其体形越来越大,那么肌肉的运动速度也就越来越慢。大块头的生物是无法快速地运动自己的肌肉的。这就是说,鸟类也一样,个头越大,即便竭尽全力,振翅的次数也将越来越低。
鸟类的体重一旦超过了四十公斤,即使通过拼命拍打翅膀得以一时地飞上天,它也难以在空中持续地进行长距离的飞行。如果认为这一观察报告令人信服,我们就可以得出一个结论,那就是,体重超过一百公斤的大型翼龙是不会飞的。
无论是始祖鸟、食草的雷龙,还是翼龙,它们有一点是共通的,翅膀的骨架部分由骨头组成而骨头的材质都是磷酸钙。就这种材质而论,拿大型的翼龙来说,光是它的那对大大的翅膀,重量就得超过四十公斤了。这样一来,它的胴体和头部就必须变得很轻,可如果太轻的话,生物的机能又无法发挥出来,它也就因此丧失了存在的意义。
如果改弦更张,强行减轻翅膀部分的重量呢?吹过高空的高速强风,以及为了使沉甸甸的身子飘起来而剧烈地扇动翅膀所产生的强烈的风压会造成翅膀上的骨头不堪其负,骨架土崩瓦解。
鸟类学者们很清楚生物进行飞行的难度,而恐龙学者们却对这一点掉以轻心了。他们都成了大大小小的恐龙教派的盲目信徒,深信两亿年前的翼龙和始祖鸟的肌肉比现在的鸟类还要进化得多,它们摆脱了流体力学的理论制约而在广袤的天空中展翅翱翔。
巨大的食草恐龙在两百年的时间里无休无止地用背肌和颈部肌肉扛着长达十三米的长脖子,用四条腿支撑四十吨的超重身躯若无其事地四处游荡。
霸王龙后腿上的单薄肌肉也同样神奇,它使得这种五吨重的食肉恐龙仅凭两条后腿就能做到健步如飞。
这种情景在当今的地球上是不可能发生的。即便肌肉扛得住,骨头也承受不了。只要芸芸众生的骨头都是出自同一种材质,以这样的方式让骨头受累百年的话,骨折和关节劳损都会如期而至。
巨大的翼龙是绝对不可能依靠自身的力量飞到空中去的。它既不可能飞得太高,也不可能在高空转换成巡航飞行的状态。
假如大气的密度大幅度上升的话,倒是还存在着可能性,可这时的氧气浓度又是个大问题。前面已经讲过,属于恐龙们的中生代是一个极端低氧的时期。如果大气稠密,其主要成分就应该是甲烷和二氧化碳。而巨型翼龙也是需要通过肺部来呼吸氧气的。即便它能够顺利地飞起来,可如果窒息而死,那就前功尽