第十三章 国会议员的数学游戏
动的理想的代表数。换句话说,如果D州的理想代表数为3.319,他的方法总会给D州3个或4个代表,永远不会给2或5个代表。符合这个自然准则的方法据说能满足定额。许多别的方法不能满足定额,这定额似乎是你所希望的一种被认为是公平的按比例分配方法的最低的定额。
可是,汉密尔顿的方法违背另一个更难理解的公平准则。在我们5个州的例子里,设想众议院的规模由26个席位增加到27个:
在27席位的众议院,A、B、C、D和E各州分别获得9、8、6、3和1个代表数。奇怪的是,即使众议院的规模增加了,D州却少了一个代表。这是汉密尔顿方法的一个严重缺点。可以这样想:虽然总人口和D州的人口都一点儿没有变,众议院人数增加了,D州的代表人数现在反而较少了。数学上一种令人痛苦的扭曲,叫做亚拉巴马悖论,使D州处于双重的不利境地(因为这种悖论是头一次在牵涉到亚拉巴马州的计算中发觉的)。上述5个州的例子是迈克尔·巴林斯基和h.佩顿·扬在一篇关于按比例分配的文章中虚构出来的。巴林斯基和扬花了9年时间调查按比例分配问题中数学的悖论,研究按比例分配提案的政治辩论历史。我的大部分叙述是以他们的著作为基础的。
这个亚拉巴马矛盾——在一个更大的众议院一个州会失去一个代表——并不是华盛顿否决汉密尔顿提案的原因。确实没有证据能证明开国元勋们知道这种数学的特殊性。华盛顿在否决汉密尔顿提案时,是被国务卿托马斯·杰佛逊的论点所左右。杰佛逊告诫说:“不损害宪法是最基本的问题,他们耍弄的按比例分配数字的花招,是很危险的。”杰佛逊自己提出了一个方案,华盛顿采纳了,尽管其方案有违反定额的严重缺点。
在巴林斯基和扬的5个州例子中,因总人口(26,000)除以众议院规模(26)是1,000,每一个众议院成员理想地代表着1,000个人。汉密尔顿的方法是把每州的人口除以1,000,然后除了有最高分数的州外,其余州的分数全部舍弃,最高分数按需要入到整数,以凑满众议院人数。杰佛逊的方法不用1,000做除数(也叫最大除数方法),要求用最大的除数,以产生每个州的代表数,不变动这些数或舍弃其分数,以达到众议院的规模。换句话说,这些数绝不需要升值。在5个州的例子中,906.1成为最大的除数,由此可得出以下结果:
如上表所示,杰佛逊和汉密尔顿的方法产生不同的结果。用杰佛逊的方法,A州——人口最多的州——多得一个代表(D州失去一个代表)。杰佛逊的方法帮助了A州并非侥幸,从数学上可以表明其方法对大州有利。他那高傲的演讲从未提到过数学的这种偏袒性,虽然,他这个精明的科学家无疑是完全意识到这一点的。但他赞成这种偏袒性,因为他和华盛顿一样,都是来自最大的州,弗吉尼亚(人口630,558)。确实,1792年第一次实行按比例分配众议院成员时,杰佛逊的方法(与汉密尔顿的方法相反)保证了弗吉尼亚州增加一个代表,从而损害了最小的特拉华州(人口55,538)。
从1792年至1841年,杰佛逊的方法被采用了大约半个世纪左右。(我说的“左右”是因为有时众议院的规模没有预先固定,它受到政治利益的调整,使各州不会在一个新的按比例分配制度下失去代表。)丹尼尔·韦伯斯特意识到杰佛逊的方法没有给他的家乡新英格兰各州以充分的代表名额之后,说服国会采用一个新的按比例分配方案。同杰佛逊的方法一样,韦伯斯特的方法(也叫最大分数法)是以选择最大除数为基础的,但是得出的数字不是自动地舍弃分数,而是按照四舍五入的标准常规计算的。对5个州来说,最大除数是957.2,这样B州的情况就比其他两个方法得出的结