第九章 威利·洛曼无辜地死去了吗?
翰·哈斯特德采用了姚的基本理论,但是简化了他的论据。哈斯特德说道:“在工作过程中,我获得了比较有力的结果。(在这种有限制的问题中)我们所知道如何设计的最小电路并不比我在理论上曾经证明它们应有的规模大出很多。”后来的证明都表明:数学家们实际上知道如何设计出并不比他们在理论上所推断的最佳电路差很多的电路。对于这些有限制的问题来说,不是数学上的无知,而是问题的本身排除了快速的解法。
苏联莫斯科大学的两位数学家阿·拉兹波洛夫和阿·安德烈耶夫在不限制电路深度但却限制所进行的运算方面取得了很大的成功。拉兹波洛夫又证明了如果不允许用“非”门的话,则用于人群问题的电路规模的增长将快于任何多项式的增长。而且,数学家们还在这里对这一结果做了改进,它表明电路必须是按指数方式增大。安德烈耶夫通过禁止用“非”门还能够证明另一类问题也需要大规模电路。
这些成就使这一领域乐观起来,虽然还没有人知道怎样才能减少对电路的限制并证明在无限制的情况下,旅行推销员的问题的确很难。“还有很长的路程要走,”赛普泽这样说道,“6年以前,我曾与人打过赌,我希望他还记住,将在2000年得出证明。我仍然信心十足,还有12年多的时间。”格雷厄姆还抱有更大的希望:“在以后3年内得到证明也不会让我吃惊。”
尽管人们普遍乐观,但在综合性理论方面(数学的一个分支学科,它表述了问题的难度)的研究人员,以他们的直觉已经知道他们会失败的。1985年冬天,美国麻省理工学院的数学研究生戴维·巴林顿曾证明,计算机能够运算的某些原始表示法会比该领域中任何人所能设想的更有功效。这种原始表示法不包含“与”门、“或”门和“非”门,但却包含一个分支门,它也有两根输出引线。当分支门受到触发时,如果输入信号具有一定的指定值,则分支门就会沿两根引线之一送出一个信号;对于所有其他输入信号,分支门沿另一根引线送出一个信号。换句话说,分支门能够处理计算机程序中的语句,诸如“如果x=5,转向步骤4;对于所有其他x,转向步骤7”。
巴林顿又证明了,全部由门层次不超过5层的分支门构成的电路,可以解所谓的多数问题:在一串的0和1中,1是不是多数?综合性理论学家普遍地(并且错误地)认为分支门限制于任何固定高度,不可能求解多数问题,更不用说严苛的五层限制了。
巴林顿说道:“我的证明很简单,但它令人惊奇,因为他们总是认为我所试图证明的都是假的。”巴林顿的结果也许没有多少实际用途——他又说:“除了它可以让我在一所好大学获得一个教师职位之外。”而且它还可以说服数学家们不要在复杂的综合性理论领域中如此自信。
________
① 如果你一定要知道的话,NP表示非决定性的多项式,而complete一词则意味着这些问题是该类问题中最难的。