第二章 阿基米德的报复
种简单而高效的燃烧武器:将石脑油与一种同水接触即自动燃烧的化学物质相混合装入罐中,人们把这种罐子掷向敌船。
对阿基米德之死的生动描述可能相当真实,尽管人们会对他所说的话表示怀疑。公元前75年,伟大的罗马演说家西塞罗来到阿基米德的墓旁,发现墓碑上刻有外切一个球的圆柱体。
牛群的问题是怎么回事呢?它真是首先由阿基米德提出来的吗?别管阿基米德是否真是出于一时赌气而凭空想出这个问题的,人们知道他确曾推算过这个问题,因此至少有2,200年的历史了。
这个问题开始是这样的:“啊!朋友,如果你智慧过人,那就专心致志算出那天那群公牛的数目吧。它们曾在西西里岛的大平原上吃草,按毛色它们被分成4组:乳白牛、黑牛、黄牛和花斑牛。每组中的公牛数占大多数,它们之间的关系为:
1、白公牛=黄公牛+(1/2+1/3)黑公牛
2、黑公牛=黄公牛+(1/4+1/5)花斑
3、花斑公牛=黄公牛+(1/6+1/7)白公牛
4、白公牛=(1/3+1/4)黑牛
5、黑公牛=(1/4+1/5)花斑公牛
6、花斑公牛=(1/5+1/6)黄牛
7、黄公牛=(1/6+1/7)白牛
该问题继续说:“啊!朋友,如果你能算出每群中公牛和母牛的数目,你还是称不上无所不知或精通数字,也不能被列入智者之列。”于是该问题涉及到其数学的本质部分:解7个带有8个未知数的等式(4组不同颜色的公牛和4组相应颜色的奶牛)。原来,这些等式并不难解。事实上,它们有无限多的答案,而牛群总头数的最小数值为50,389,082,这些牛可以在西西里6,358,400公顷的大平原上自由自在地吃草。
然而,阿基米德并未就此停止。他对公牛数目另外又提出了两项限制条件,从而使这问题变得难多了:
8.白公牛+黑公牛=一个平方数。
9.花斑公牛+黄公牛=一个三角数。
问题最后说:“如果你已算出这群牛的总数,噢!朋友,你俨然就是一个征服者了,不消说,你就是数字科学方面的专家了。”
阿基米德的牛群问题由于采用了三角数和平方数的概念而与华达哥拉斯的工作有关。公元前6世纪,毕达哥拉斯及其追随者用圆点布置成三角、四方或其他几何图形来表示数。如3、6和10这些数被称为三角数,因为它们可由构成三角的圆点来表示:
西门从海中拽出的鱼的数目153也是一个三角数。由于同样的原因,像4,9和16这些数被称为平方数,因为它们可以用圆点布置成正方形来表示:
不要以为古人为断定某个特定的数是否可以由特定的几何圆点图形表示而耗费长时间去胡写乱画,要知道,解决这一问题存在一种纯数的方法。所有三角数都可由连续的整数(从1开始)相加得出;如 3=1+2,6=1+2+3,以及10=1+2+3+4。所有的平方数都可由整数的平方得出:4=2×2,9=3×3,及16=4×4。
由于用三角数和平方数对公牛进行限制,牛问题变得非常棘手,两千年里没有取得真正的进展。1880年,一位德国研究者在经过枯燥计算之后表明:符合所有8项条件的最小的牛头数为一个有206,545位数的数,该数是以776开头的。阿基米德可能是一个有魔力之人,但他决不是个现实主义者:西西里小岛上决不会容下这样一群牛。正如一位数理论家所说:“即使它们是最小的微生物——不,即使它们是电子,一个以从地球到银河的距离为半径的圆也只能包含这种动物的很小一部分。”