第二部 误闯普林斯顿-6
到那时候,虽然我压根儿不晓得豪斯道夫同态到底是些什么东西,我也知道我猜的对不对了。虽然数学家认为他们的拓扑学定理是反直觉的,但大多数时候我都猜对,原因在于这些定理并不像表面看起来那么难懂。慢慢地,你便习惯那些细细分割的古怪性质,猜测也愈来愈准了。
不过,虽然我经常给这批数学家找麻烦,他们却一直对我很好。他们是一群快乐的家伙,构思理论就是他们的使命,而且乐在其中。他们经常讨论那些“简单、琐碎”的理论;而当你提出一个简单问题时,他们也总是尽力向你说明。
跟我共用浴室的就是这样的数学家,名字叫做奥伦(PaulOlum)。我们成了好朋友,他一直想教我数学。我学到“同伦群”(opy group)的程度时终于放弃了;不过在那程度之下的东西,我都理解得相当好。
我始终没有学会的是“围道积分(contour integration)”。
高中物理老师贝德先生给过我一本书,我会的所有积分方法,都是从这本书里学到的。
事情是这样的:一天下课之后,他叫我留下。“费曼”,他说,“你上课时话太多了,声音又太大。我知道你觉得这些课太沉闷,现在我给你这本书。以后你坐到后面角落去好好读这本书,等你全弄懂了之后,我才准你讲话。”
于是每到上物理课时,不管老师教的是帕斯卡定律或是别的什么,我都一概不理。我坐在教室的角落,念伍兹(woods)著的这本《高等微积分学》。贝德知道我念过一点《实用微积分》,因此他给我这本真正的大部头著作——给大学二三年级学生念的教材。书内有傅立叶级数、贝塞尔函数、行列式、椭圆函数——各种我前所未知的奇妙东西。
那本书还教你如何对积分符号内的参数求微分。后来我发现,一般大学课程并不怎么教这个技巧,但我掌握了它的用法,往后还一再地用到它。因此,靠着自修那本书,我做积分的方法往往与众不同。
结果经常发生的是,我在麻省理工或普林斯顿的朋友被某些积分难住,原因却是他们从学校学来的标准方法不管用。
如果那是围道积分或级数展开,他们都懂得怎么把答案找出;现在他们却碰壁了。这时我便使出“积分符号内取微分”的方法——这是因为我有一个与众不同的工具箱。当其他人用光了他们的工具,还没法找到解答时,便把问题交给我了!