第7章 刹车势:发现肿瘤抑制基因
小的,这就为阻止细胞疯长垒起了一道高高的屏障。
连续两记猛击剔除肿瘤抑制基因的原动力,是多种肿瘤形成的关键。在研究一种罕见的眼睛肿瘤——视网膜神经胶质瘤时,我们第一次认识到这种动力。这种肿瘤只发生在六七岁以下的儿童中,而且发病率只有两万分之一。美国每年死于癌症的人超过50万,但是每年新发的视网膜神经胶质瘤病例只有200出头。这种罕见的肿瘤似乎源自胚胎视网膜细胞,这些细胞通常必定会长成光感受器——视杆细胞和视锥细胞,感知光线并将电信号通过视神经传递到大脑,以此对光作出反应。
该病可分成两类。散发性视网膜神经胶质瘤患儿并无曾患此病的近亲。而在家族性病例中,家族几代成员中常有不止一个人患有这种本来很罕见的恶疾。
1971年,德克萨斯的儿科医生艾尔弗雷德·克努森(AlfredKnudson)提出一个理论,将两类视网膜神经胶质瘤统一在一把遗传之伞下。他认为一个视网膜细胞必须经过两次基因突变才能发展为视网膜神经胶质瘤。散发型中,要么是在胚胎发育过程中,要么是在出生后不久,某个视网膜细胞相继发生两次突变,而后才开始失控生长。
克努森认为该病的家族型发生两次突变的情况大有讲究。在最终发育成婴儿的受精卵中已经出现了一次突变。这次突变也许是从患有同样疾病的父母一方继承而来,也许是在精子或卵子的形成过程中发生的,而后突变传递给发育着的胚胎的所有细胞。相应地,新生儿的所有细胞——最重要的是包括了视网膜细胞——获得了一份突变基因副本。此后,任何一个视网膜细胞只须再来一次突变就能满足诱发眼癌必须的双重突变条件。
回想一下袭击除性腺以外所有细胞基因组的体细胞突变。由于突变的发生纯属偶然,因而同一个视网膜细胞发生两次体细胞突变的可能性是极小的。实际上,在400O名儿童中只有1名患有散发性视网膜神经胶质瘤;而且患儿视网膜肿瘤的数目总是只有1个。
相反,家族性视网膜神经胶质瘤发病时,一次偶然的体细胞突变就足以引发肿瘤暴长。由于视网膜中靶细胞的数目庞大(超过1000万),而且单细胞突变的概率为百万分之一,因此继承了突变基因和相关的视网膜神经胶质瘤易患体质的儿童,双眼常常有多个肿瘤发生。这种情况下,每一个视网膜细胞事实上已经危如累卵,一次体细胞突变就可令它踏上不归路。
到20世纪即年代中期,有关突变和受穷变影响的基因情况已趋明朗。两个靶基因是坐落在人体第13对染色体上的一个基因的两份副本,它们因为与视网膜神经胶质瘤的相关性而被称作Rb基因。克努森预计每次突变敲掉其中的一份Rb基因副本。当只有一份基因副本失活时,该视网膜细胞仍可凭借幸免于难的另一份基因继续完全正常地生长。然而如果丧失了两份Rb基因,控制细胞繁殖的机制就会被破坏殆尽——细胞失去了它的刹车。
哈里斯细胞融合实验预言的肿瘤抑制基因的所有特征,在Rb基因身上均有体现。正常细胞基因组中有Rb基因存在,肿瘤细胞基因组中的Rb基因则或缺失或功能性失活。但是现在,在哈里斯早期研究成果的基础上产生了新的见解。首先,肿瘤抑制基因功能的丧失分成两步,即两份基因副本次第消失。其次,通过精子或卵子,肿瘤抑制基因的缺陷形式能够由父或母传递给子女,导致对肿瘤的先天易患性。
在我和撒迪厄斯·德里雅(thaddeusDryia)各自实验室的共同努力下,通过基因克隆分离了构成Rb基因的DNA序列。克隆使我们能充分估计Rb基因在人类癌症的起源中扮演的角色。乍看之下,Rb基因的作用仅限于引起这种罕见的儿童视网膜肿瘤。可是实际上,所有这类