返回
朗读
暂停
+书签

视觉:
关灯
护眼
字体:
声音:
男声
女声
金风
玉露
学生
大叔
司仪
学者
素人
女主播
评书
语速:
1x
2x
3x
4x
5x

上一页 书架管理 下一页
十六、怪圈之谜:悖论的实质
33a34…

    ……

    编号N 0.an1an2an3an4…

    然后,我们根据以下规则构成一个新数d=0.b1b2bn:

    当ann=1时,bn=0,而ann≠1时,bn=1。

    显然,d不同于上表中的任何数,因为bn≠amn,即至少一位是不相同的。

    但由于d是[0,1]区间中的实数,依据假设,d又必须等同于表上的某一个数,矛盾!故原来的假设不能成立。

    通过分析可以看出,这一论证的关键是构造出一个不属于已知集合(这里是[0,1]区间中所有实数组成的集)的新元素。由于这一构造是通过对角线位置上的数的变动来实现的,因此,这种方法被称为“对角线方法”。对角线方法既然是构造新元素的方法,所以,它肯定的就是集合的无限扩张的可能性,即过程性(这里就是可不断形成新的数)。这种对过程性的确认在一般情况下是没有问题的。但是,如果我们同时又假设了集合的绝对完成性(这里就是设定所列表中的数为所有实数的总体)。对角线方法的应用就会导致直接的矛盾。因为这时所构造出来的就将是一个具有两重性的元素:它既属于又不属于原来的集合,从而构成悖论。

    对此,数学家亨金曾作过形象的比喻。他指出,在康托尔的集合论中为什么会出现悖论呢?这是因为其中既包含了“不可抵挡的矛”(指幂集的扩展是无限制的,没有条件的),又有一个“能抵挡一切的盾”(指其中包含一切集合的集合,即大全集),因此,就像我国古代关于矛和盾的故事一样,在康托尔的集合理论中,矛盾是不可避免的。

    可见,集合论悖论的根源在于集合的对立统一在认识过程中遭到歪曲,而数学的形式逻辑思维特点是造成悖论的重要原因。因为数学在形式逻辑范围内活动,它要求对象的明确性,因此,当集合的辩证性不可能直接在数学理论中得到反映,而只能片面地强调集合的完成性,或者片面强调集合的过程性,而当二者机械地联结在一起时,在形式逻辑的思维看来就是导致了悖论。

    与集合一样,语言本身也是辩证的:作为客观世界的表述,语言既是已经完成了的(例如,语言中的每一概念在历史发展的各个时期都有确定的含义和范围),同时又处于无限的发展之中(例如,概念的含义和范围随着历史的发展而不断变化)。由于考虑的角度不同,人们可能分别强调对立中的某一环节。但如果把二者绝对地割裂开来并片面夸大,然后把它们机械地联结起来,就会形成悖论。

    例如,在格雷林悖论中,首先强调了语言在某一方面的完成性,因为这样才能对形容词的总体进行分析,并按照是否具有本身所代表的性质进行分类;但同时它也肯定了语言的无限发展性,即构成了新形容词“自状的”和“非自状的”。这两种考虑在一定意义上都是合理的,但形式逻辑的思维把二者割裂开,当把它们绝对对立并机械地联系起来时,悖论就出现了。

    由上可知,形式逻辑思维的局限是造成悖论的重要基础,因而,悖论是形式逻辑本身所无法解决的。下面的事例很能说明这一问题。

    1947年,正在哈佛大学学习的威廉•伯克哈特和西奥多•卡林制造了世界上第一台用于解决逻辑问题的计算机。他们让这台计算机检验语句的正误。当他们给计算机输入了说谎者悖论“这句话是错的”时,这台可怜的计算机立即发起狂来,不断地打出对、错、对、错的结果,陷入无休止的反复中。戈登•狄克森的《猴子扭伤》也曾讲到这样一件事:某些科学家想让计算机不工作来延长机器的寿命。他们的办法是告诉计算机:“你必须拒绝我现在给你编的语句,因为我编的所有语句都是错
上一页 书架管理 下一页

首页 >悖论趣话简介 >悖论趣话目录 > 十六、怪圈之谜:悖论的实质